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Preliminaries

e M real analytic Riemannian manifold.
e Metric (-, ): T,M x T,M — R.
o Levi-Civita connection V: X(M) x X(M) — X(M).

o Curvaturetensor R: T, M x T, M x T’ M — T, M:

R(X,Y)Z =VxVyZ —VyVxZ - Vixy Z.
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Totally geodesic submanifolds

e M real analytic Riemannian manifold, f: > — M isometric
Immersion.

o fistotally geodesic if:

~v: I — Y geodesic=- f o v: I — M geodesic.
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General problem

o £:3F — M™iscompatibleif f: ¥ — Gri(T M) given by

f(:l?) =df; (Twz)
Is Injective.
e f admits a unique inextendable extension.

o fi:2; — M (2 =1, 2)areequivalent (and we write f1 >~ fo) if
there exists an isometry ¢: 221 — Yo with f1 = f9 0 @.

Given M, classify (equivalence classes of) inextendable
compatible totally geodesic immersions to M up to congruence.
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Nearly Kahler manifolds

e (M, J) almost Hermitian manifold.

o M isnearly Kahler if VJ skew-symmetric.

e Butruille ('06): Classification of homogeneous nearly Kahler
manifolds G /K in dimension six:

M G K

SO G, SU(3)
F(C?) SU(3) T?

CP? Sp(2) U(1) x Sp(1)
S3 x S° SU(2)? ASU(2)




Previously known results

o Totally geodesic + Lagrangian (Aslan '23, Liefsoens '22).

o Totally geodesic + J-holomorphic curve (Cwiklinski, Vrancken

o Totally geodesic + Lagrangian (Storm '20).
e S3 x S3:

o Totally geodesic + Lagrangian (Zhang, Dioos, Hu, Vrancken, Wang
'16).

o Totally geodesic + J-holomorphic curve (Bolton, Dillen, Dioos,
Vrancken '22).
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Riemannian homogeneous spaces

e M = G/K Riemannian homogeneous space, 0 = eK.
e G ~ M gives ahomomorphism G — I(M).
o Anti-homomorphism X € g+— X* € X(M):

X d

— E tX'.
P = G| xp(tX) - p
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Riemannian homogeneous spaces

M is reductive if there exists p C g with

g=top, AdK)p=rn.

e p =g/t = T,M as K-modules.
e Isotropy representation K ~ T\, M «~ Adjoint action K ~ §.

e G-invariant tensors on M «~ Ad(K)-invariant tensors on p.
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Connection and curvature

e M has a canonical connection V ©.
(V}*Y*)O — —[X, Y]p, X, Y enp.

e D =V — VC¢difference tensor.

1
DxY = _[X,Y], + U(X,Y),

2U(X,Y), 2) =([Z2,X],,Y) + (X, [Z,Y];),
(VX*Y*)O — _[Xa Y]p + DxY,
R(X,Y) = [Dx, Dy| — Dixyy}, — ad(|X, Y]e).
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Natural reductivity

e M is naturally reductive if U = 0.

e M is naturally reductive < Exp(tX) - o geodesicfor all X € p.

e M is normal homogeneous if:
1. G has a bi-invariant metric.
2. The complementp = g & ¢.

3. The metricon M is induced from the metric on G.
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Totally geodesic subspaces

o f:X — M totally geodesic. Then f is determined by any tangent
subspace V € f(X) :

fi:Zi = M, f1(Z1) N f2(22) # D = f1 =~ fo.

e GivenV C T, M,whendoes V generate a totally geodesic
submanifold?

Theorem (Cartan '51, Hermann '59). M real analytic,
V C T,M. The following are equivalent:

1.V is a totally geodesic subspace.
2.V is V¥ R-invariant for all k > 0.




D-invariant totally geodesic submanifolds

e M = G/K naturally reductive, ¥ — M submanifold.

o Y is D-invariantif T',2Jis D-invariant for all x € 2..



D-invariant totally geodesic submanifolds

e M = G/K naturally reductive, ¥ — M submanifold.

e Y. is D-invariant if T, is D-invariant for allz € ..




CP” = Sp(2)/(U(1) x Sp(1))

Submanifold Orbit of Relationship with J
Rpé,l/z(\/i) SU(2) Lagrangian
S2(1//2) Sp(1); J-holomorphic
S2(1) SU(2) J-holomorphic
S2(v/5) SU(2)4, J-holomorphic

A3 = S?(C?)is the four-dimensional irrep. of SU(2).

a —b a(lal®* —2/b]*) —+/3a’b\ , (b(2]al® — [b]*) —+/3ab’
( )H( V3a? o )“(



F(C?) = SU(3)/T?

Submanifold Orbit of Relationship with J
F(R3) = S3(2v/2) /Qs SO(3) Lagrangian
S 1/4( ) SU(2) Lagrangian
T T? J-holomorphic
S2(1/4/2) U(2) J-holomorphic
S2(v/2) SO(3) J-holomorphic
RPQ(Z\/§) Inhomogeneous Totally real

A:<\f (0,2), V2 (1,
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S° x §% =SU(2)°/ASU(2)

Submanifold Orbit of Relationship with J
S3(2/4/3) SU(2)- Lagrangian
5%71/3(2) SU(2)13,2 Lagrangian

Tr T C U(1)° J-holomorphic
S2(4/3/2) ASU(2) J-holomorphic
S2(2/4/3) H C SU(2)132 Totally real
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Riemannian cones

e (M, g) complete real analytic Riemannian manifold.
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e (M, g) complete real analytic Riemannian manifold.

e Riemmanian cone: M = (0, 00) x M with the metric

g = dr? + rg.



Riemannian cones

e (M, g) complete real analytic Riemannian manifold.
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Riemannian cones

e (M, g) complete real analytic Riemannian manifold.
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e I(M) = I(M).
e Ifdim M = 6,and Ric = 5g, then (Bar '93):

M is strict nearly Kahler = Hol(M) € {0, Gy}



Riemannian cones

e (M, g) complete real analytic Riemannian manifold.
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= dr? + r?g.

I(M) = I(M).

If dim M = 6, and Ric = 5g, then (Bar '93):

M is strict nearly Kahler = Hol(M

If M +# S®and 7 (M) = 0, then Hol(M)

M)

= Go.

{0, G2}









Corollary. > — M maximal totally geodesic submanifold. Then
one of the two holds:

.Y = S for amaximal totally geodesic S — M.

ii. 22 is a complete totally geodesic hypersurface.

Example of a type ii submanifold. Take M = (0, 7/2) x R?
with the metric

dz’ + (sinz)’p(y, 2)*dy® + (sinz)’q(y, z)*d2’

The hypersurface

NN

) = {(secx,x,y,z):(x,y,z) - M} C M

Is totally geodesic.
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The case ii. is not possible if Hol(M) = Gy (Jentsch, Moroianu,
Semmelmann, '13).
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The case ii. is not possible if Hol(M) = G (Jentsch, Moroianu,
Semmelmann, '13).




NN

The case ii. is not possible if Hol(M) = Gy (Jentsch, Moroianu,
Semmelmann, '13).

Theorem (LN, Rodriguez-Vazquez). Let M + S0 be a
cohomogeneity one Gs-cone. Every maximal totally geodesic

submanifold of M is the cone of a maximal totally geodesic
submanifold of M.

Theorem (LN, Rodriguez-Vazquez). Let M + SO be 3
cohomogeneity one Gs-cone. Every maximal totally geodesic

submanifold X of ]/W\is

i. Associative (i.e. calibrated by the Go-structure ¢) if dim > = 3.
ii. Coassociative (i.e. calibrated by x¢) if dim > = 4.



Ambient | Submanifold Orbit of Relationship with J
RP? 1/2(\/5) SU(2)’ Lagrangian
Cp3 S2(1//2) Sp(1); J-holomorphic
S2(1) SU(2) J-holomorphic
S2(+4/5) SU(2)4, J-holomorphic
F(R?) SO(3) Lagrangian
S? 1/4( ) SU(2) Lagrangian
F(C?) : T LE J-ho omorph!c
S2(1//2) U(2) J-holomorphic
S2(1/2) SO(3) J-holomorphic
RP? (2\/5) Inhomogeneous Totally real
S3(2/4/3) SU(2)- Lagrangian
S?C 1/3( ) SU(2)13,2 Lagrangian
S% x S? Tr T C U(1)° J-holomorphic
S%(4/3/2) ASU(2) J-holomorphic

S52(2/4/3)

(
H g SU(2) 13,2

Totally real




