Polar actions on some noncompact symmetric spaces

Juan Manuel Lorenzo Naveiro Workshop on Manifolds with Symmetries, 2022

GALICIAN CENTRE FOR MATHEMATICAL RESEARCH AND TECHNOLOGY

Polar actions

• *M* complete Riemannian manifold, *G* ∼ *M* proper isometric action.

Polar actions

• *M* complete Riemannian manifold, *G* ∼ *M* proper isometric action.

 $G \curvearrowright M$ is *polar* if there exists $\Sigma \subseteq M$ intersecting all orbits orthogonally.

Polar actions

• *M* complete Riemannian manifold, *G* ∼ *M* proper isometric action.

 $G \curvearrowright M$ is *polar* if there exists $\Sigma \subseteq M$ intersecting all orbits orthogonally.

- dim(Σ) = cohom($G \simeq M$).
- Σ is totally geodesic.

Examples on \mathbb{R}^3

Examples on $\mathbb{R}H^2$

• M = G/K of noncompact type, $G = I^0(M)$, o = eK.

- M = G/K of noncompact type, $G = I^0(M)$, o = eK.
- $\sigma: G \to G, \sigma(g) = s_o g s_o$.
- $\theta = \sigma_*$ Cartan involution.

- M = G/K of noncompact type, $G = I^0(M)$, o = eK.
- $\sigma: G \to G, \sigma(g) = s_o g s_o$.
- $\theta = \sigma_*$ Cartan involution.
- $g = \mathfrak{t} \oplus \mathfrak{p}$ Cartan decomposition, $\mathfrak{p} = T_o M$.
- $\langle X, Y \rangle = -B(X, \theta Y)$ inner product on g.

- M = G/K of noncompact type, $G = I^0(M)$, o = eK.
- $\sigma: G \to G, \sigma(g) = s_o g s_o$.
- $\theta = \sigma_*$ Cartan involution.
- $g = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition, $\mathfrak{p} = T_o M$.
- $\langle X, Y \rangle = -B(X, \theta Y)$ inner product on g.
- Totally geodesic submanifolds \leftrightarrow Lie triple systems $V \subseteq \mathfrak{p} : [[V, V], V] \subseteq V$.

• $H \leq G$ closed connected subgroup acting polarly.

- $H \leq G$ closed connected subgroup acting polarly.
- Slice representation: $H_o \simeq v_o(H \cdot o)$.

$$h \cdot \xi = h_{*o}\xi$$

- $H \leq G$ closed connected subgroup acting polarly.
- Slice representation: $H_o \simeq v_o(H \cdot o)$.

$$h \cdot \xi = h_{*o}\xi$$

• The slice representation is polar with section $T_o\Sigma$. Can we go backwards?

• $H \leq G$ closed connected subgroup.

- $H \leq G$ closed connected subgroup.
- $\xi \in v_o(H \cdot o)$ such that $H_o \cdot \xi$ is a principal orbit.

- $H \leq G$ closed connected subgroup.
- $\xi \in v_o(H \cdot o)$ such that $H_o \cdot \xi$ is a principal orbit.
- $V = \nu_{\xi}(H_o \cdot \xi), \quad \Sigma = \exp_o(V).$

- $H \leq G$ closed connected subgroup.
- $\xi \in v_o(H \cdot o)$ such that $H_o \cdot \xi$ is a principal orbit.

•
$$V = \nu_{\xi}(H_o \cdot \xi), \quad \Sigma = \exp_o(V).$$

Theorem

 $H \sim M$ is polar $\Leftrightarrow [[V, V], V] \subseteq V$ and $[V, V] \perp \mathfrak{h}$.

The action is hyperpolar $\Leftrightarrow [V, V] = 0$.

The space $SL(3, \mathbb{R})/SO(3)$

• $M = \{A \in SL(3, \mathbb{R}) : A^T = A, A > 0\} = SL(3, \mathbb{R})/SO(3).$

The space $SL(3, \mathbb{R})/SO(3)$

- $M = \{A \in SL(3, \mathbb{R}) : A^T = A, A > 0\} = SL(3, \mathbb{R})/SO(3).$
- $\theta X = -X^T$.
- $\mathfrak{t} = \mathfrak{so}(3) = \{A \in \mathfrak{sl}(3, \mathbb{R}) : A \text{ skew} \text{symmetric}\}.$
- $\mathfrak{p} = \{A \in \mathfrak{sl}(3, \mathbb{R}) : A \text{ symmetric}\}.$

The space $SL(3, \mathbb{R})/SO(3)$

- $M = \{A \in SL(3, \mathbb{R}) : A^T = A, A > 0\} = SL(3, \mathbb{R})/SO(3).$
- $\theta X = -X^T$.
- $\mathfrak{t} = \mathfrak{so}(3) = \{A \in \mathfrak{sl}(3, \mathbb{R}) : A \text{ skew} \text{symmetric}\}.$
- $\mathfrak{p} = \{A \in \mathfrak{sl}(3, \mathbb{R}) : A \text{ symmetric}\}.$
- $\langle X, Y \rangle$ is proportional to the trace form tr (XY^T) .
- $I^0(M) = SL(3, \mathbb{R}).$

Iwasawa decomposition

• $a = \{ Traceless diagonal matrices \}.$

•
$$H_{\alpha_1} = \frac{1}{6} \operatorname{diag}(1, -1, 0), \quad H_{\alpha_2} = \frac{1}{6} \operatorname{diag}(0, 1, -1).$$

Iwasawa decomposition

 a = {Traceless diagonal matrices}.

•
$$H_{\alpha_1} = \frac{1}{6} \operatorname{diag}(1, -1, 0), \quad H_{\alpha_2} = \frac{1}{6} \operatorname{diag}(0, 1, -1).$$

- $\mathfrak{g}_{\alpha_1} = \mathbb{R}E_{12}$, $\mathfrak{g}_{\alpha_2} = \mathbb{R}E_{23}$, $\mathfrak{g}_{\alpha_1+\alpha_2} = \mathbb{R}E_{13}$.
- $\mathfrak{n} = \mathfrak{g}_{\alpha_1} \oplus \mathfrak{g}_{\alpha_2} \oplus \mathfrak{g}_{\alpha_1 + \alpha_2} = \{\text{Upper triangular matrices}\}.$

Iwasawa decomposition

 a = {Traceless diagonal matrices}.

•
$$H_{\alpha_1} = \frac{1}{6} \operatorname{diag}(1, -1, 0), \quad H_{\alpha_2} = \frac{1}{6} \operatorname{diag}(0, 1, -1).$$

- $\mathfrak{g}_{\alpha_1} = \mathbb{R}E_{12}$, $\mathfrak{g}_{\alpha_2} = \mathbb{R}E_{23}$, $\mathfrak{g}_{\alpha_1+\alpha_2} = \mathbb{R}E_{13}$.
- $\mathfrak{n} = \mathfrak{g}_{\alpha_1} \oplus \mathfrak{g}_{\alpha_2} \oplus \mathfrak{g}_{\alpha_1 + \alpha_2} = \{\text{Upper triangular matrices}\}.$
- A, N, AN connected subgroups of SL(3, ℝ) with Lie algebras
 a, n, a ⊕ n.

Foliations of cohomogeneity one

- Irreducible case: Berndt—Tamaru.
- Reducible case: Berndt—Díaz-Ramos—Tamaru; Solonenko.

Type
$$\mathfrak{F}_{\ell}$$

 $\mathfrak{h} = (\mathfrak{a} \ominus \ell) \oplus \mathfrak{n}$
 $\ell \subseteq \mathfrak{a}$
Type \mathfrak{F}_{1}
 $\mathfrak{h} = \mathfrak{a} \oplus \mathfrak{g}_{\alpha_{2}} \oplus \mathfrak{g}_{\alpha_{1}+\alpha_{2}}$

Cohomogeneity four

Theorem

An irreducible Riemannian symmetric space contains a totally geodesic hypersurface if and only if it has constant curvature.

Cohomogeneity four

Theorem

An irreducible Riemannian symmetric space contains a totally geodesic hypersurface if and only if it has constant curvature.

Corollary

 $M = SL(3, \mathbb{R})/SO(3)$ does not admit cohomogeneity four polar actions.

The general strategy consists of three steps.

1) If $H \leq G$ induces a homogeneous foliation, then \mathfrak{h} is solvable (Berndt—Díaz-Ramos—Tamaru).

The general strategy consists of three steps.

- 1) If $H \leq G$ induces a homogeneous foliation, then \mathfrak{h} is solvable (Berndt—Díaz-Ramos—Tamaru).
- 2) Structure of maximal solvable subalgebras (Mostow) ⇒ we can assume h ⊆ a ⊕ n.

The general strategy consists of three steps.

1) If $H \leq G$ induces a homogeneous foliation, then \mathfrak{h} is solvable (Berndt—Díaz-Ramos—Tamaru).

2) Structure of maximal solvable subalgebras (Mostow) ⇒ we can assume h ⊆ a ⊕ n.

Theorem

If $H \leq G$ acts polarly inducing a cohomogeneity two foliation on M = G/K, then \mathfrak{h} is contained in $\mathfrak{b} = \mathfrak{t} \oplus \mathfrak{a} \oplus \mathfrak{n}$, with $\mathfrak{t} \subseteq Z_{\mathfrak{f}}(\mathfrak{a})$.

The general strategy consists of three steps.

- 1) If $H \leq G$ induces a homogeneous foliation, then \mathfrak{h} is solvable (Berndt—Díaz-Ramos—Tamaru).
- 2) Structure of maximal solvable subalgebras (Mostow) ⇒ we can assume h ⊆ a ⊕ n.
- 3) Every subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$ induces a homogeneous foliation \Rightarrow apply polarity criterion with $V = v_o(H \cdot o)$.

Foliations of cohomogeneity two

• Three foliations up to orbit equivalence

Foliations of cohomogeneity three

1

Unique (non hyperpolar) example

$$\mathfrak{h} = \mathfrak{g}_{\alpha_2} \oplus \mathfrak{g}_{\alpha_1 + \alpha_2}$$

Theorem: a polar homogeneous foliation \mathfrak{F} on $M = SL(3, \mathbb{R})/SO(3)$ is orbit equivalent to the one induced exactly by one of the following subalgebras of $\mathfrak{sl}(3, \mathbb{R})$:

- Totally geodesic submanifolds of *M* are classified (Klein).
- If $H \leq G$ acts polarly with section Σ , we know $[T_o\Sigma, T_o\Sigma] \perp \mathfrak{h}$.

- Totally geodesic submanifolds of *M* are classified (Klein).
- If $H \leq G$ acts polarly with section Σ , we know $[T_o\Sigma, T_o\Sigma] \perp \mathfrak{h}$.

Proposition

 $M = SL(3, \mathbb{R})/SO(3)$ does not admit cohomogeneity three actions with singular orbits.

- Totally geodesic submanifolds of *M* are classified (Klein).
- If $H \leq G$ acts polarly with section Σ , we know $[T_o\Sigma, T_o\Sigma] \perp \mathfrak{h}$.

Proposition

The only polar action with a fixed point on $M = SL(3, \mathbb{R})/SO(3)$ is the isotropy action $K \curvearrowright M$.

Polar actions on some noncompact symmetric spaces

Juan Manuel Lorenzo Naveiro Workshop on Manifolds with Symmetries, 2022

GALICIAN CENTRE FOR MATHEMATICAL RESEARCH AND TECHNOLOGY

