

Introduction to polar actions

Juan Manuel Lorenzo Naveiro Universidade de Santiago de Compostela, Spain

Seminar on symmetric spaces, 2021

Setting the stage

- \Rightarrow $(M^{n}, \langle \cdot, \cdot \rangle)$ complete Riemannian manifold with isometry group $I(M)$.
- \triangleright exp: $T(M) \rightarrow M$ Riemannian exponential map.
- \triangleright *G* connected Lie group with Lie algebra g.
- \triangleright Exp: $g \to G$ Lie exponential map.
- \triangleright *G* \sim *M* proper isometric action.

$$
X_p^* = \frac{d}{dt}\big|_{t=0} \operatorname{Exp}(tX) \cdot p.
$$

Polar actions

 $G \cap M$ is **polar** if there exists $\Sigma \subseteq M$ such that:

- \bullet $\Sigma \cap G \cdot p \neq \emptyset$ for all $p \in M$.
- $T_p \Sigma \perp T_p(G \cdot p)$ for all $p \in \Sigma$.

 $SO(2) \sim \mathbb{R}^2$

Examples in ℝ

Some properties

- $G \curvearrowright M$ polar action with section Σ .
- $F: (g, p) \in G \times \Sigma \mapsto g \cdot p \in M$ is surjective.
- $T_p M = dF_{(e,p)} T_{(e,p)} (G \times \Sigma)$.

Some properties

 $G \curvearrowright M$ polar action with section Σ .

- $F: (g, p) \in G \times \Sigma \mapsto g \cdot p \in M$ is surjective.
- $T_p M = T_p (G \cdot p) \bigoplus T_p \Sigma$.
- $G \cdot p$ has maximum dimension (i.e. principal or exceptional).

Proposition

 $\dim(\Sigma) = \min\{\mathrm{codim}(G \cdot p) \mid p \in M\} = \mathrm{cohom}(G \cap M).$

Some properties

 $G \curvearrowright M$ polar action with section Σ .

- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow v_p \Sigma = T_p(G \cdot p)$.
- Any $\xi \in \nu_p \Sigma$ is of the form

$$
\xi = X_p^* = \frac{d}{dt}\big|_{t=0} \operatorname{Exp}(tX) \cdot p.
$$

• $A_{\xi} : T_p \Sigma \to T_p \Sigma$ is skew-symmetric $\Rightarrow A_{\xi} = 0$.

Proposition

 Σ is a totally geodesic submanifold of M.

Consequences

- If Σ is a section, then $\tilde{\Sigma}$ is a section if and only if $\tilde{\Sigma} = g \cdot \Sigma$ for some $g \in G$.
- If $p \in \Sigma$ belongs to a principal/exceptional orbit, $\Sigma = \exp_p (v_p(G \cdot p))$.

Question

Given $G \curvearrowright M$ and a regular point $p \in M$, when is $\Sigma = \exp_p \left(\nu_p(G \cdot p) \right)$ a section?

 $G \sim M$ cohomogeneity one action.

- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow G \cdot p$ is a hypersurface.
- $\gamma: \mathbb{R} \to M$ unit speed geodesic with $\gamma'(0) = \xi \in \nu_p(G \cdot p)$.
- $\Sigma = \gamma(\mathbb{R})$ meets all orbits orthogonally: given $X \in \mathfrak{g}$,

- $G \sim M$ cohomogeneity one action
- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow G \cdot p$ is a hypersurface
- $\gamma: \mathbb{R} \to M$ unit speed geodesic with $\gamma'(0) = \xi \in \nu_p(G \cdot p)$
- $\Sigma = \gamma(\mathbb{R})$ meets all orbits orthogonally: given $X \in \mathfrak{g}$,

 $\gamma'(t), X^*_{\gamma(t)} \rangle' = \langle \gamma'(t), \nabla_{\gamma'(t)} X^* \rangle = 0$

- $G \sim M$ cohomogeneity one action
- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow G \cdot p$ is a hypersurface
- $\gamma: \mathbb{R} \to M$ unit speed geodesic with $\gamma'(0) = \xi \in \nu_p(G \cdot p)$
- $\Sigma = \gamma(\mathbb{R})$ meets all orbits orthogonally: given $X \in \mathfrak{g}$,

$$
\langle \gamma'(t), X^*_{\gamma(t)} \rangle' = \langle \gamma'(t), \nabla_{\gamma'(t)} X^* \rangle = 0 \Rightarrow \langle \gamma'(t), X^*_{\gamma(t)} \rangle = C
$$

 $G \sim M$ cohomogeneity one action

- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow G \cdot p$ is a hypersurface
- $\gamma: \mathbb{R} \to M$ unit speed geodesic with $\gamma'(0) = \xi \in \nu_p(G \cdot p)$
- $\Sigma = \gamma(\mathbb{R})$ meets all orbits orthogonally: given $X \in \mathfrak{g}$,

$$
\langle \gamma'(t), X^*_{\gamma(t)} \rangle' = \langle \gamma'(t), \nabla_{\gamma'(t)} X^* \rangle = 0 \Rightarrow \langle \gamma'(t), X^*_{\gamma(t)} \rangle = 0.
$$

Proposition

Every cohomogeneity one action is polar.

False in cohomogeneity two

Example: -representations

M simply connected semisimple symmetric space, $o \in M$, $G = I^0(M)$, $K = G_o$.

 \triangleright $\theta: \mathfrak{g} \to \mathfrak{g}$ Cartan involution, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition.

 $\mathfrak{p} \cong T_oM, X \equiv X_o^*$.

Isotropy representation $K \curvearrowright T_0 M \leftrightarrow$ Adjoint representation $K \curvearrowright p$ (s-representation).

Theorem

The representation $K \cap p$ is polar. Any maximal abelian $a \subseteq p$ is a section.

Example: -representations

M simply connected semisimple symmetric space, $o \in M$, $G = I^0(M)$, $K = G_o$.

 \triangleright $\theta: \mathfrak{g} \to \mathfrak{g}$ Cartan involution, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition.

 $\mathfrak{p} \cong T_oM, X \equiv X_o^*$.

Isotropy representation $K \sim T_0 M \leftrightarrow$ Adjoint representation $K \sim p$ (s-representation).

Corollary

Maximal abelian subspaces of $\mathfrak p$ are conjugate.

Example: -representations

M simply connected semisimple symmetric space, $o \in M$, $G = I^0(M)$, $K = G_o$.

 \triangleright θ : $g \rightarrow g$ Cartan involution, $g = f \bigoplus p$ Cartan decomposition.

 $\mathfrak{p} \cong T_oM, X \equiv X_o^*$.

Isotropy representation $K \curvearrowright T_0 M \leftrightarrow$ Adjoint representation $K \curvearrowright p$ (s-representation).

Theorem (Dadok)

Every polar representation in \mathbb{R}^n is orbit equivalent to an s-representation.

 $\gamma(t) = \exp_p(t\xi),$ $L'(0) = 0$

The set
$$
\Sigma = \exp_p(v_p(G \cdot p))
$$
 intersects all orbits

$$
\gamma(t) = \exp_p(t\xi),
$$

\n
$$
L'(0) = -\int_0^1 \langle V, \gamma'' \rangle dt + \langle V(1), \gamma'(1) \rangle - \langle V(0), \gamma'(0) \rangle
$$

 $\gamma(t) = \exp_p(t\xi),$ $L'(0) = -\langle V(0), \xi \rangle$

 $\gamma(t) = \exp_p(t\xi),$ $\xi \in \nu_p(G \cdot p)$ ⇓ $L'(0) = -\langle V(0), \xi \rangle$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$. .

 $J'' + R(J, \gamma')\gamma' = 0$ $R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$. .
- $\,\cdot\quad \{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'.$

$$
J = a^i E_i + b^j F_j
$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$. .
- $\,\cdot\quad \{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'.$

$$
J = a^i E_i + b^j F_j
$$

$$
R(E_i, \gamma')\gamma' = c^{ik}E_k
$$

$$
\langle R(F_j, \gamma')\gamma', E_l \rangle = -\langle R(E_1, E_l)E_1, F_j \rangle
$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$. .
- $\,\cdot\quad \{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'.$

$$
J = a^i E_i + b^j F_j
$$

$$
R(E_i, \gamma')\gamma' = c^{ik}E_k
$$

$$
\langle R(F_j, \gamma')\gamma', E_l \rangle = 0
$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$. .
- $\,\cdot\quad \{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'.$

$$
J = a^i E_i + b^j F_j
$$

$$
(a^i)''E_i + a^k c^{ki}E_i + (b^j)''F_j + b^j R(F_j, \gamma')\gamma' = 0
$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$. .
- $\,\cdot\quad \{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'.$

$$
J = a^i E_i + b^j F_j
$$

$$
(a^i)'' + a^k c^{ki} = 0
$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$. .
- $\,\cdot\quad \{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'.$

 $J = a^i E_i + b^j F_j$ $J \perp \Sigma \Leftrightarrow J(0), J'(0) \perp T_p \Sigma$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$. .
- $\,\cdot\quad \{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'.$

$$
J = a^i E_i + b^j F_j
$$

$$
J \perp \Sigma \Leftrightarrow X_p, \nabla_{\gamma'(0)} X \perp T_p \Sigma
$$

• $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field, $p \in M$.

Theorem

X is orthogonal to
$$
\Sigma
$$
 iff $X_p \in \nu_p \Sigma$ and $\nabla_{\xi} X \in \nu_p \Sigma$ for all $\xi \in T_p \Sigma$.

Corollary

Given an isometric action $G \curvearrowright M$ and a totally geodesic $\Sigma \subseteq M$, Σ is orthogonal to all the orbits it meets iff $X_p^* \in \nu_p \Sigma$ and $\nabla_\xi X^* \in \nu_p \Sigma$ for all $\xi \in T_p \Sigma$ and $X \in \mathfrak{g}$.

- $M = G/K$ symmetric space, $G = I^0(M)$, $K = G_{\alpha}$.
- $g = f \bigoplus p$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*} T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]$ ∗ $\exp_0(tX) = \exp(tX) \cdot o$

- $M = G/K$ symmetric space, $G = I^0(M)$, $K = G_{\alpha}$.
- $g = f \bigoplus p$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*} T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]$ ∗ $\exp_0(tX) = \exp(tX) \cdot o$

$$
\Sigma \subseteq M
$$
 totally geodesic, $o \in \Sigma \Rightarrow V = T_o \Sigma \subseteq p$ satisfies $[[V, V], V] \subseteq V$

- $M = G/K$ symmetric space, $G = I^0(M)$, $K = G_{\alpha}$.
- $g = f \bigoplus p$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*} T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]$ ∗ $\exp_0(tX) = \text{Exp}(tX) \cdot o$

Assume $V \subseteq p$ satisfies $[(V, V], V] \subseteq V$ $b = Lie(V)$

- $M = G/K$ symmetric space, $G = I^0(M)$, $K = G_{\alpha}$.
- $g = f \bigoplus p$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*} T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]$ ∗ $\exp_0(tX) = \text{Exp}(tX) \cdot o$

 $b = [V, V] \oplus V$ Assume $V \subseteq p$ satisfies $[(V, V], V] \subseteq V$

- $M = G/K$ symmetric space, $G = I^0(M)$, $K = G_{\alpha}$.
- $g = f \bigoplus p$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*} T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]$ ∗ $\exp_0(tX) = \text{Exp}(tX) \cdot o$

 $\mathfrak{b} = [V, V] \oplus V \rightsquigarrow B \subseteq G$ Lie subgroup Assume $V \subseteq p$ satisfies $[(V, V], V] \subseteq V$

- $M = G/K$ symmetric space, $G = I^0(M)$, $K = G_{\alpha}$.
- $g = f \bigoplus p$ Cartan decomposition, θ Cartan involution.

$$
\nabla_{X^*} T = [X^*, T]
$$

$$
R(X^*, Y^*)Z^* = -[[X, Y], Z]^*
$$

$$
\exp_o(tX) = \exp(tX) \cdot o
$$

Assume $V \subseteq p$ satisfies $[(V, V], V] \subseteq V$ $\mathfrak{b} = [V, V] \oplus V \rightsquigarrow B \subseteq G$ Lie subgroup $\Sigma = B \cdot o$ complete, totally geodesic with tangent space $b_p = V$

- $M = G/K$ symmetric space, $G = I^0(M)$, $K = G_{\alpha}$.
- $g = f \bigoplus p$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*} T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]$ ∗ $\exp_o(tX) = \exp(tX) \cdot o$

Theorem

There is a bijective correspondence

Complete totally geodesic submanifolds through o .

 \leftrightarrow Lie triple systems in p

- $M = G/K$ symmetric space, $G = I^0(M)$, $K = G_{\alpha}$.
- $q = f \bigoplus p$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*} T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]$ ∗ $\exp_o(tX) = \exp(tX) \cdot o$

Theorem

There is a bijective correspondence

Complete flat totally geodesic submanifolds through o.

 \leftrightarrow Abelian subspaces of p

-
- \bullet $\langle \cdot, \cdot \rangle$ Ad (G) -invariant inner product on g.
- $ad(X)$ skew-symmetric for all $X \in \mathfrak{g}$.
- Extend $\langle\cdot,\cdot\rangle_{\mathfrak{p}}$ to a G -invariant metric on M .

 $M = G/K$ of compact type $M = G/K$ of noncompact type

•
$$
\langle X, Y \rangle = -B(X, \theta Y)
$$
 is an

inner product on g.

- $ad(X)$ skew-symmetric for all $X \in \mathfrak{k}$.
- ad(X) symmetric for all $X \in \mathfrak{p}$.
- Extend $\left\langle \cdot , \cdot \right\rangle_{\mathfrak{p}}$ to a G -invariant metric on M .

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

Question

When is $H \sim M$ a polar action?

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

 $\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}$.

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$
\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}.
$$

 $H\curvearrowright M$ polar \Leftrightarrow $\Sigma=\exp_o\big(\mathfrak{h}^{\bot}_\mathfrak{p}\big)$ is a section

- $\mathfrak{h}^{\perp}_{\mathfrak{p}}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_\mathfrak{p}^\perp$.

 $0 = \langle \nabla_{\xi} X^*, \eta \rangle$ $X \in \mathfrak{h}, \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp}$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$
\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}.
$$

 $H\curvearrowright M$ polar \Leftrightarrow $\Sigma=\exp_o\big(\mathfrak{h}^{\bot}_\mathfrak{p}\big)$ is a section

- $\mathfrak{h}^{\perp}_{\mathfrak{p}}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_\mathfrak{p}^\perp$.

 $0 = \langle [\xi^*, X^*], \eta \rangle$ $X \in \mathfrak{h}, \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp}$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$
\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}.
$$

 $H\curvearrowright M$ polar \Leftrightarrow $\Sigma=\exp_o\big(\mathfrak{h}^{\bot}_\mathfrak{p}\big)$ is a section

- $\mathfrak{h}^{\perp}_{\mathfrak{p}}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_\mathfrak{p}^\perp$.

 $0 = \langle -[\xi, X]^*, \eta \rangle$ $X \in \mathfrak{h}, \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp}$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$
\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}.
$$

 $H\curvearrowright M$ polar \Leftrightarrow $\Sigma=\exp_o\big(\mathfrak{h}^{\bot}_\mathfrak{p}\big)$ is a section

- $\mathfrak{h}^{\perp}_{\mathfrak{p}}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_\mathfrak{p}^\perp$.

 $0 = \langle -[\xi, X], \eta \rangle$ $X \in \mathfrak{h}, \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp}$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$
\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}.
$$

 $H\curvearrowright M$ polar \Leftrightarrow $\Sigma=\exp_o\big(\mathfrak{h}^{\bot}_\mathfrak{p}\big)$ is a section

- $\mathfrak{h}^{\perp}_{\mathfrak{p}}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_\mathfrak{p}^\perp$.

 $X \in \mathfrak{h}, \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp}$ $\frac{1}{p}$ 0 = $\pm \langle X, [\xi, \eta] \rangle$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$
\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}.
$$

 $H\curvearrowright M$ polar \Leftrightarrow $\Sigma=\exp_o\big(\mathfrak{h}^{\bot}_\mathfrak{p}\big)$ is a section

Theorem (Gorodski/Berndt, Díaz-Ramos, Tamaru)

 $H\curvearrowright M$ is polar if and only if $\mathfrak{h}^{\bot}_\mathfrak{p}$ is a Lie Triple System and $\left[\mathfrak{h}^{\bot}_\mathfrak{p},\mathfrak{h}^{\bot}_\mathfrak{p}\right]\bot$ $\mathfrak{h}.$ The action is hyperpolar if and only if $\left[\mathfrak{h}^{\perp}_{\mathfrak{p}},\mathfrak{h}^{\perp}_{\mathfrak{p}}\right]=0.$

