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Introduction to
polar actions



Setting the stage

➢ 𝑀𝑛, ⟨⋅,⋅⟩ complete Riemannian manifold with isometry group 𝐼 𝑀 .

➢ exp: 𝑇 𝑀 → 𝑀 Riemannian exponential map.

➢ 𝐺 connected Lie group with Lie algebra 𝔤.

➢ Exp: 𝔤 → 𝐺 Lie exponential map.

➢ 𝐺 ↷ 𝑀 proper isometric action.
𝑋𝑝
∗ =

𝑑

𝑑𝑡
|𝑡=0Exp 𝑡𝑋 ⋅ 𝑝.



Polar actions

𝐺 ↷ 𝑀 is polar if there exists Σ ⊆ 𝑀
such that:

● Σ ∩ 𝐺 ⋅ 𝑝 ≠ ∅ for all 𝑝 ∈ 𝑀.

● 𝑇𝑝Σ ⊥ 𝑇𝑝 𝐺 ⋅ 𝑝 for all 𝑝 ∈ Σ.

SO(2) ↷ ℝ2



Examples in ℝ𝟑



Some properties
𝐺 ↷ 𝑀 polar action with section Σ.

• 𝐹: 𝑔, 𝑝 ∈ 𝐺 × Σ ↦ 𝑔 ⋅ 𝑝 ∈ 𝑀 is surjective.

• 𝑇𝑝𝑀 = 𝑑𝐹 𝑒,𝑝 𝑇(𝑒,𝑝) 𝐺 × Σ .



Some properties
𝐺 ↷ 𝑀 polar action with section Σ.

• 𝐹: 𝑔, 𝑝 ∈ 𝐺 × Σ ↦ 𝑔 ⋅ 𝑝 ∈ 𝑀 is surjective.

• 𝑇𝑝𝑀 = 𝑇𝑝 𝐺 ⋅ 𝑝 ⊕ 𝑇𝑝Σ.

• 𝐺 ⋅ 𝑝 has maximum dimension (i.e. principal or exceptional).

Proposition

dim Σ = min codim 𝐺 ⋅ 𝑝 ∣ 𝑝 ∈ 𝑀 = cohom 𝐺 ↷ 𝑀 .



Some properties
𝐺 ↷ 𝑀 polar action with section Σ.

• 𝑝 ∈ 𝑀 with 𝐺 ⋅ 𝑝 principal orbit ⇒𝜈𝑝Σ = 𝑇𝑝 𝐺 ⋅ 𝑝 .

• Any 𝜉 ∈ 𝜈𝑝Σ is of the form

𝜉 = 𝑋𝑝
∗ =

𝑑

𝑑𝑡
|𝑡=0Exp 𝑡𝑋 ⋅ 𝑝.

• 𝐴𝜉: 𝑇𝑝Σ → 𝑇𝑝Σ is skew-symmetric ⇒𝐴𝜉 = 0.

Proposition

Σ is a totally geodesic submanifold of 𝑀.



Consequences

• If Σ is a section, then ෨Σ is a section if and only if ෨Σ = 𝑔 ⋅ Σ for some 𝑔 ∈ 𝐺.

• If 𝑝 ∈ Σ belongs to a principal/exceptional orbit, Σ = exp𝑝 𝜈𝑝 𝐺 ⋅ 𝑝 .

Question

Given 𝐺 ↷ 𝑀 and a regular point 𝑝 ∈ 𝑀, when is Σ = exp𝑝 𝜈𝑝 𝐺 ⋅ 𝑝 a 
section? 



Example: cohomogeneity one actions
𝐺 ↷ 𝑀 cohomogeneity one action.

• 𝑝 ∈ 𝑀 with 𝐺 ⋅ 𝑝 principal orbit ⇒𝐺 ⋅ 𝑝 is a hypersurface.

• 𝛾:ℝ → 𝑀 unit speed geodesic with 𝛾′ 0 = 𝜉 ∈ 𝜈𝑝 𝐺 ⋅ 𝑝 .

• Σ = 𝛾(ℝ) meets all orbits orthogonally: given𝑋 ∈ 𝔤,



Example: cohomogeneity one actions
𝐺 ↷ 𝑀 cohomogeneity one action

• 𝑝 ∈ 𝑀 with 𝐺 ⋅ 𝑝 principal orbit ⇒𝐺 ⋅ 𝑝 is a hypersurface

• 𝛾:ℝ → 𝑀 unit speed geodesic with 𝛾′ 0 = 𝜉 ∈ 𝜈𝑝 𝐺 ⋅ 𝑝

• Σ = 𝛾(ℝ) meets all orbits orthogonally: given𝑋 ∈ 𝔤,

𝛾′ 𝑡 , 𝑋𝛾(𝑡)
∗ ′ = 𝛾′ 𝑡 , ∇𝛾′(𝑡)𝑋

∗ = 0



Example: cohomogeneity one actions
𝐺 ↷ 𝑀 cohomogeneity one action

• 𝑝 ∈ 𝑀 with 𝐺 ⋅ 𝑝 principal orbit ⇒𝐺 ⋅ 𝑝 is a hypersurface

• 𝛾:ℝ → 𝑀 unit speed geodesic with 𝛾′ 0 = 𝜉 ∈ 𝜈𝑝 𝐺 ⋅ 𝑝

• Σ = 𝛾(ℝ) meets all orbits orthogonally: given𝑋 ∈ 𝔤,

𝛾′ 𝑡 , 𝑋𝛾(𝑡)
∗ ′ = 𝛾′ 𝑡 , ∇𝛾′(𝑡)𝑋

∗ = 0 ⇒ 𝛾′ 𝑡 , 𝑋𝛾(𝑡)
∗ = 𝐶



Example: cohomogeneity one actions
𝐺 ↷ 𝑀 cohomogeneity one action

• 𝑝 ∈ 𝑀 with 𝐺 ⋅ 𝑝 principal orbit ⇒𝐺 ⋅ 𝑝 is a hypersurface

• 𝛾:ℝ → 𝑀 unit speed geodesic with 𝛾′ 0 = 𝜉 ∈ 𝜈𝑝 𝐺 ⋅ 𝑝

• Σ = 𝛾(ℝ) meets all orbits orthogonally: given𝑋 ∈ 𝔤,

𝛾′ 𝑡 , 𝑋𝛾(𝑡)
∗ ′ = 𝛾′ 𝑡 , ∇𝛾′(𝑡)𝑋

∗ = 0 ⇒ 𝛾′ 𝑡 , 𝑋𝛾(𝑡)
∗ = 0.

Proposition

Every cohomogeneity one action is polar.



False in cohomogeneity two

𝜃 ⋅ 𝑧, 𝑡 = 𝑒𝑖𝜃𝑧, 𝑡 + 𝜃



Example: 𝒔-representations

𝑀 simply connected semisimple symmetric space, 𝑜 ∈ 𝑀,  𝐺 = 𝐼0 𝑀 ,  𝐾 = 𝐺𝑜 .

➢ 𝜃: 𝔤 → 𝔤 Cartan involution, 𝔤 = 𝔨⊕ 𝔭 Cartan decomposition. 

𝔭 ≅ 𝑇𝑜𝑀, 𝑋 ≡ 𝑋𝑜
∗.

Isotropy representation 𝐾 ↷ 𝑇𝑜𝑀↔ Adjoint representation 𝐾 ↷ 𝔭 (𝑠-representation). 

Theorem
The representation 𝐾 ↷ 𝔭 is polar. Any maximal abelian 𝔞 ⊆ 𝔭 is a section. 



Example: 𝒔-representations

𝑀 simply connected semisimple symmetric space, 𝑜 ∈ 𝑀,  𝐺 = 𝐼0 𝑀 ,  𝐾 = 𝐺𝑜 .

➢ 𝜃: 𝔤 → 𝔤 Cartan involution, 𝔤 = 𝔨⊕ 𝔭 Cartan decomposition. 

𝔭 ≅ 𝑇𝑜𝑀, 𝑋 ≡ 𝑋𝑜
∗.

Isotropy representation 𝐾 ↷ 𝑇𝑜𝑀↔ Adjoint representation 𝐾 ↷ 𝔭 (𝑠-representation). 

Corollary
Maximal abelian subspaces of 𝔭 are conjugate.



Example: 𝒔-representations

𝑀 simply connected semisimple symmetric space, 𝑜 ∈ 𝑀,  𝐺 = 𝐼0 𝑀 ,  𝐾 = 𝐺𝑜 .

➢ 𝜃: 𝔤 → 𝔤 Cartan involution, 𝔤 = 𝔨⊕ 𝔭 Cartan decomposition. 

𝔭 ≅ 𝑇𝑜𝑀, 𝑋 ≡ 𝑋𝑜
∗.

Isotropy representation 𝐾 ↷ 𝑇𝑜𝑀↔ Adjoint representation 𝐾 ↷ 𝔭 (𝑠-representation). 

Theorem (Dadok)
Every polar representation in ℝ𝑛 is orbit equivalent to an 𝑠-representation. 



The set Σ = exp𝑝 𝜈𝑝 𝐺 ⋅ 𝑝 intersects all orbits



The set Σ = exp𝑝 𝜈𝑝 𝐺 ⋅ 𝑝 intersects all orbits



𝛾 𝑡 = exp𝑝 𝑡𝜉 ,

𝐿′ 0 = 0

The set Σ = exp𝑝 𝜈𝑝 𝐺 ⋅ 𝑝 intersects all orbits



𝛾 𝑡 = exp𝑝 𝑡𝜉 ,

𝐿′ 0 = −න
0

1

𝑉, 𝛾′′ 𝑑𝑡

+ 𝑉 1 , 𝛾′ 1 − ⟨𝑉 0 , 𝛾′(0)⟩

The set Σ = exp𝑝 𝜈𝑝 𝐺 ⋅ 𝑝 intersects all orbits



𝛾 𝑡 = exp𝑝 𝑡𝜉 ,

𝐿′ 0 = −⟨𝑉 0 , 𝜉⟩

The set Σ = exp𝑝 𝜈𝑝 𝐺 ⋅ 𝑝 intersects all orbits



𝛾 𝑡 = exp𝑝 𝑡𝜉 ,

𝜉 ∈ 𝜈𝑝 𝐺 ⋅ 𝑝

⇓

𝐿′ 0 = −⟨𝑉 0 , 𝜉⟩

The set Σ = exp𝑝 𝜈𝑝 𝐺 ⋅ 𝑝 intersects all orbits



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic
submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector 
field.

• 𝛾:ℝ → Σ geodesic, 𝐽 𝑡 = 𝑋𝛾(𝑡).

𝐽′′ + 𝑅 𝐽, 𝛾′ 𝛾′ = 0

𝑅 𝑋, 𝑌 𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇ 𝑋,𝑌 𝑍



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic
submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector 
field.

• 𝛾:ℝ → Σ geodesic, 𝐽 𝑡 = 𝑋𝛾(𝑡).

• 𝐸𝑖 , 𝐹𝑗 adapted parallel ortonormal frame, 
𝐸1 = 𝛾′.

𝐽 = 𝑎𝑖𝐸𝑖 + 𝑏𝑗𝐹𝑗

𝐽′′ + 𝑅 𝐽, 𝛾′ 𝛾′ = 0



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic
submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector 
field.

• 𝛾:ℝ → Σ geodesic, 𝐽 𝑡 = 𝑋𝛾(𝑡).

• 𝐸𝑖 , 𝐹𝑗 adapted parallel ortonormal frame, 
𝐸1 = 𝛾′.

𝐽 = 𝑎𝑖𝐸𝑖 + 𝑏𝑗𝐹𝑗

𝑅 𝐸𝑖 , 𝛾′ 𝛾
′ = 𝑐𝑖𝑘𝐸𝑘

𝑅 𝐹𝑗 , 𝛾
′ 𝛾′, 𝐸𝑙 = − 𝑅 𝐸1, 𝐸𝑙 𝐸1, 𝐹𝑗

𝐽′′ + 𝑅 𝐽, 𝛾′ 𝛾′ = 0



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic
submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector 
field.

• 𝛾:ℝ → Σ geodesic, 𝐽 𝑡 = 𝑋𝛾(𝑡).

• 𝐸𝑖 , 𝐹𝑗 adapted parallel ortonormal frame, 
𝐸1 = 𝛾′.

𝐽 = 𝑎𝑖𝐸𝑖 + 𝑏𝑗𝐹𝑗

𝑅 𝐸𝑖 , 𝛾′ 𝛾
′ = 𝑐𝑖𝑘𝐸𝑘

𝑅 𝐹𝑗, 𝛾
′ 𝛾′, 𝐸𝑙 = 0

𝐽′′ + 𝑅 𝐽, 𝛾′ 𝛾′ = 0



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic
submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector 
field.

• 𝛾:ℝ → Σ geodesic, 𝐽 𝑡 = 𝑋𝛾(𝑡).

• 𝐸𝑖 , 𝐹𝑗 adapted parallel ortonormal frame, 
𝐸1 = 𝛾′.

𝐽 = 𝑎𝑖𝐸𝑖 + 𝑏𝑗𝐹𝑗

𝐽′′ + 𝑅 𝐽, 𝛾′ 𝛾′ = 0

𝑎𝑖
′′
𝐸𝑖 + 𝑎𝑘𝑐𝑘𝑖𝐸𝑖 + 𝑏𝑗

′′
𝐹𝑗 + 𝑏𝑗𝑅 𝐹𝑗 , 𝛾

′ 𝛾′ = 0



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic
submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector 
field.

• 𝛾:ℝ → Σ geodesic, 𝐽 𝑡 = 𝑋𝛾(𝑡).

• 𝐸𝑖 , 𝐹𝑗 adapted parallel ortonormal frame, 
𝐸1 = 𝛾′.

𝐽 = 𝑎𝑖𝐸𝑖 + 𝑏𝑗𝐹𝑗

𝐽′′ + 𝑅 𝐽, 𝛾′ 𝛾′ = 0

𝑎𝑖
′′
+ 𝑎𝑘𝑐𝑘𝑖 = 0



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic
submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector 
field.

• 𝛾:ℝ → Σ geodesic, 𝐽 𝑡 = 𝑋𝛾(𝑡).

• 𝐸𝑖 , 𝐹𝑗 adapted parallel ortonormal frame, 
𝐸1 = 𝛾′.

𝐽 = 𝑎𝑖𝐸𝑖 + 𝑏𝑗𝐹𝑗

𝐽′′ + 𝑅 𝐽, 𝛾′ 𝛾′ = 0

𝐽 ⊥ Σ ⇔ 𝐽 0 , 𝐽′ 0 ⊥ 𝑇𝑝Σ



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic
submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector 
field.

• 𝛾:ℝ → Σ geodesic, 𝐽 𝑡 = 𝑋𝛾(𝑡).

• 𝐸𝑖 , 𝐹𝑗 adapted parallel ortonormal frame, 
𝐸1 = 𝛾′.

𝐽 = 𝑎𝑖𝐸𝑖 + 𝑏𝑗𝐹𝑗

𝐽′′ + 𝑅 𝐽, 𝛾′ 𝛾′ = 0

𝐽 ⊥ Σ ⇔ 𝑋𝑝, ∇𝛾′ 0 𝑋 ⊥ 𝑇𝑝Σ



Orthogonality

• Σ ⊆ 𝑀 complete totally geodesic submanifold, 𝑋 ∈ 𝔛 𝑀 Killing vector field, 𝑝 ∈ 𝑀. 

Theorem
𝑋 is orthogonal to Σ iff 𝑋𝑝 ∈ 𝜈𝑝Σ and ∇𝜉𝑋 ∈ 𝜈𝑝Σ for all 𝜉 ∈ 𝑇𝑝Σ. 

Corollary
Given an isometric action 𝐺 ↷ 𝑀 and a totally geodesic Σ ⊆ 𝑀, Σ is orthogonal to
all the orbits it meets iff 𝑋𝑝∗ ∈ 𝜈𝑝Σ and ∇𝜉𝑋∗ ∈ 𝜈𝑝Σ for all 𝜉 ∈ 𝑇𝑝Σ and 𝑋 ∈ 𝔤. 



T.g. submanifolds of symmetric spaces

• 𝑀 = 𝐺/𝐾 symmetric space, 𝐺 = 𝐼0(𝑀), 
𝐾 = 𝐺𝑜 .

• 𝔤 = 𝔨 ⊕ 𝔭 Cartan decomposition, 𝜃 Cartan
involution.

∇𝑋∗𝑇 = 𝑋∗, 𝑇

𝑅 𝑋∗, 𝑌∗ 𝑍∗ = − 𝑋, 𝑌 , 𝑍
∗

exp𝑜 𝑡𝑋 = Exp 𝑡𝑋 ⋅ 𝑜



T.g. submanifolds of symmetric spaces

• 𝑀 = 𝐺/𝐾 symmetric space, 𝐺 = 𝐼0(𝑀), 
𝐾 = 𝐺𝑜 .

• 𝔤 = 𝔨 ⊕ 𝔭 Cartan decomposition, 𝜃 Cartan
involution.

Σ ⊆ 𝑀 totally geodesic, 𝑜 ∈ Σ⇒𝑉 = 𝑇𝑜Σ ⊆ 𝔭 satisfies 𝑉, 𝑉 , 𝑉 ⊆ 𝑉

∇𝑋∗𝑇 = 𝑋∗, 𝑇

𝑅 𝑋∗, 𝑌∗ 𝑍∗ = − 𝑋, 𝑌 , 𝑍
∗

exp𝑜 𝑡𝑋 = Exp 𝑡𝑋 ⋅ 𝑜



T.g. submanifolds of symmetric spaces

Assume 𝑉 ⊆ 𝔭 satisfies 𝑉, 𝑉 , 𝑉 ⊆ 𝑉

𝔟 = Lie 𝑉

• 𝑀 = 𝐺/𝐾 symmetric space, 𝐺 = 𝐼0(𝑀), 
𝐾 = 𝐺𝑜 .

• 𝔤 = 𝔨 ⊕ 𝔭 Cartan decomposition, 𝜃 Cartan
involution.

∇𝑋∗𝑇 = 𝑋∗, 𝑇

𝑅 𝑋∗, 𝑌∗ 𝑍∗ = − 𝑋, 𝑌 , 𝑍
∗

exp𝑜 𝑡𝑋 = Exp 𝑡𝑋 ⋅ 𝑜



T.g. submanifolds of symmetric spaces

𝔟 = 𝑉, 𝑉 ⊕ 𝑉

• 𝑀 = 𝐺/𝐾 symmetric space, 𝐺 = 𝐼0(𝑀), 
𝐾 = 𝐺𝑜 .

• 𝔤 = 𝔨 ⊕ 𝔭 Cartan decomposition, 𝜃 Cartan
involution.

∇𝑋∗𝑇 = 𝑋∗, 𝑇

𝑅 𝑋∗, 𝑌∗ 𝑍∗ = − 𝑋, 𝑌 , 𝑍
∗

exp𝑜 𝑡𝑋 = Exp 𝑡𝑋 ⋅ 𝑜

Assume 𝑉 ⊆ 𝔭 satisfies 𝑉, 𝑉 , 𝑉 ⊆ 𝑉



T.g. submanifolds of symmetric spaces

𝔟 = 𝑉, 𝑉 ⊕ 𝑉 ⇝ 𝐵 ⊆ 𝐺 Lie subgroup

• 𝑀 = 𝐺/𝐾 symmetric space, 𝐺 = 𝐼0(𝑀), 
𝐾 = 𝐺𝑜 .

• 𝔤 = 𝔨 ⊕ 𝔭 Cartan decomposition, 𝜃 Cartan
involution.

∇𝑋∗𝑇 = 𝑋∗, 𝑇

𝑅 𝑋∗, 𝑌∗ 𝑍∗ = − 𝑋, 𝑌 , 𝑍
∗

exp𝑜 𝑡𝑋 = Exp 𝑡𝑋 ⋅ 𝑜

Assume 𝑉 ⊆ 𝔭 satisfies 𝑉, 𝑉 , 𝑉 ⊆ 𝑉



T.g. submanifolds of symmetric spaces

Assume 𝑉 ⊆ 𝔭 satisfies 𝑉, 𝑉 , 𝑉 ⊆ 𝑉

𝔟 = 𝑉, 𝑉 ⊕ 𝑉 ⇝ 𝐵 ⊆ 𝐺 Lie subgroup

Σ = 𝐵 ⋅ 𝑜 complete, totally geodesic
with tangent space 𝔟𝔭 = 𝑉

• 𝑀 = 𝐺/𝐾 symmetric space, 𝐺 = 𝐼0(𝑀), 
𝐾 = 𝐺𝑜 .

• 𝔤 = 𝔨 ⊕ 𝔭 Cartan decomposition, 𝜃 Cartan
involution.

∇𝑋∗𝑇 = 𝑋∗, 𝑇

𝑅 𝑋∗, 𝑌∗ 𝑍∗ = − 𝑋, 𝑌 , 𝑍
∗

exp𝑜 𝑡𝑋 = Exp 𝑡𝑋 ⋅ 𝑜



T.g. submanifolds of symmetric spaces

• 𝑀 = 𝐺/𝐾 symmetric space, 𝐺 = 𝐼0(𝑀), 
𝐾 = 𝐺𝑜 .

• 𝔤 = 𝔨 ⊕ 𝔭 Cartan decomposition, 𝜃 Cartan
involution.

Theorem
There is a bijective correspondence

Complete totally geodesic
submanifolds through 𝑜. Lie triple systems in 𝔭↔

∇𝑋∗𝑇 = 𝑋∗, 𝑇

𝑅 𝑋∗, 𝑌∗ 𝑍∗ = − 𝑋, 𝑌 , 𝑍
∗

exp𝑜 𝑡𝑋 = Exp 𝑡𝑋 ⋅ 𝑜



T.g. submanifolds of symmetric spaces

• 𝑀 = 𝐺/𝐾 symmetric space, 𝐺 = 𝐼0(𝑀), 
𝐾 = 𝐺𝑜 .

• 𝔤 = 𝔨 ⊕ 𝔭 Cartan decomposition, 𝜃 Cartan
involution.

Theorem
There is a bijective correspondence

∇𝑋∗𝑇 = 𝑋∗, 𝑇

𝑅 𝑋∗, 𝑌∗ 𝑍∗ = − 𝑋, 𝑌 , 𝑍
∗

exp𝑜 𝑡𝑋 = Exp 𝑡𝑋 ⋅ 𝑜

Complete flat totally geodesic
submanifolds through 𝑜. Abelian subspaces of 𝔭↔



Polarity criterion

𝑀 = 𝐺/𝐾 of compact type 𝑀 = 𝐺/𝐾 of noncompact type

• ⟨⋅,⋅⟩ Ad 𝐺 -invariant inner

product on 𝔤.

• ad 𝑋 skew-symmetric for all

𝑋 ∈ 𝔤.

• Extend ⟨⋅,⋅⟩𝔭 to a 𝐺-invariant

metric on 𝑀. 

• 𝑋, 𝑌 = −𝐵 𝑋, 𝜃𝑌 is an

inner product on 𝔤.

• ad 𝑋 skew-symmetric for all

𝑋 ∈ 𝔨.

• ad 𝑋 symmetric for all 𝑋 ∈ 𝔭.

• Extend ⟨⋅,⋅⟩𝔭 to a 𝐺-invariant

metric on 𝑀. 



Polarity criterion

𝐻 ≤ 𝐺 connected closed subgroup, 𝐻 ⋅ 𝑜 principal orbit.

Question
When is 𝐻 ↷ 𝑀 a polar action?



Polarity criterion

𝐻 ≤ 𝐺 connected closed subgroup, 𝐻 ⋅ 𝑜 principal orbit.

𝔥𝔭
⊥ = 𝑋 ∈ 𝔭 | 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝔥 = 𝔭⊖ 𝔥𝔭.



Polarity criterion

𝐻 ≤ 𝐺 connected closed subgroup, 𝐻 ⋅ 𝑜 principal orbit.

• 𝔥𝔭
⊥ is a Lie Triple System.

• 𝑋𝑜
∗ ∈ 𝜈𝑜Σ and ∇𝜉𝑋∗ ∈ 𝜈𝑜Σ for all 𝑋 ∈ 𝔥 and 𝜉 ∈ 𝔥𝔭

⊥.

0 = ⟨∇𝜉𝑋
∗, 𝜂⟩

𝐻 ↷ 𝑀 polar ⇔Σ = exp𝑜 𝔥𝔭
⊥ is a section

𝑋 ∈ 𝔥, 𝜉, 𝜂 ∈ 𝔥𝔭
⊥

𝔥𝔭
⊥ = 𝑋 ∈ 𝔭 | 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝔥 = 𝔭⊖ 𝔥𝔭.



Polarity criterion

𝐻 ≤ 𝐺 connected closed subgroup, 𝐻 ⋅ 𝑜 principal orbit.

0 = ⟨ 𝜉∗, 𝑋∗ , 𝜂⟩

• 𝔥𝔭
⊥ is a Lie Triple System.

• 𝑋𝑜
∗ ∈ 𝜈𝑜Σ and ∇𝜉𝑋∗ ∈ 𝜈𝑜Σ for all 𝑋 ∈ 𝔥 and 𝜉 ∈ 𝔥𝔭

⊥.

𝐻 ↷ 𝑀 polar ⇔Σ = exp𝑜 𝔥𝔭
⊥ is a section

𝑋 ∈ 𝔥, 𝜉, 𝜂 ∈ 𝔥𝔭
⊥

𝔥𝔭
⊥ = 𝑋 ∈ 𝔭 | 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝔥 = 𝔭⊖ 𝔥𝔭.



Polarity criterion

𝐻 ≤ 𝐺 connected closed subgroup, 𝐻 ⋅ 𝑜 principal orbit.

0 = ⟨− 𝜉, 𝑋 ∗, 𝜂⟩

• 𝔥𝔭
⊥ is a Lie Triple System.

• 𝑋𝑜
∗ ∈ 𝜈𝑜Σ and ∇𝜉𝑋∗ ∈ 𝜈𝑜Σ for all 𝑋 ∈ 𝔥 and 𝜉 ∈ 𝔥𝔭

⊥.

𝐻 ↷ 𝑀 polar ⇔Σ = exp𝑜 𝔥𝔭
⊥ is a section

𝑋 ∈ 𝔥, 𝜉, 𝜂 ∈ 𝔥𝔭
⊥

𝔥𝔭
⊥ = 𝑋 ∈ 𝔭 | 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝔥 = 𝔭⊖ 𝔥𝔭.



Polarity criterion

𝐻 ≤ 𝐺 connected closed subgroup, 𝐻 ⋅ 𝑜 principal orbit.

0 = ⟨− 𝜉, 𝑋 , 𝜂⟩

• 𝔥𝔭
⊥ is a Lie Triple System.

• 𝑋𝑜
∗ ∈ 𝜈𝑜Σ and ∇𝜉𝑋∗ ∈ 𝜈𝑜Σ for all 𝑋 ∈ 𝔥 and 𝜉 ∈ 𝔥𝔭

⊥.

𝐻 ↷ 𝑀 polar ⇔Σ = exp𝑜 𝔥𝔭
⊥ is a section

𝑋 ∈ 𝔥, 𝜉, 𝜂 ∈ 𝔥𝔭
⊥

𝔥𝔭
⊥ = 𝑋 ∈ 𝔭 | 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝔥 = 𝔭⊖ 𝔥𝔭.



Polarity criterion

𝐻 ≤ 𝐺 connected closed subgroup, 𝐻 ⋅ 𝑜 principal orbit.

𝐻 ↷ 𝑀 polar ⇔Σ = exp𝑜 𝔥𝔭
⊥ is a section

𝑋 ∈ 𝔥, 𝜉, 𝜂 ∈ 𝔥𝔭
⊥ 0 = ⟨𝑋, 𝜉, 𝜂 ⟩

• 𝔥𝔭
⊥ is a Lie Triple System.

• 𝑋𝑜
∗ ∈ 𝜈𝑜Σ and ∇𝜉𝑋∗ ∈ 𝜈𝑜Σ for all 𝑋 ∈ 𝔥 and 𝜉 ∈ 𝔥𝔭

⊥.

𝔥𝔭
⊥ = 𝑋 ∈ 𝔭 | 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝔥 = 𝔭⊖ 𝔥𝔭.

+−



Polarity criterion

𝐻 ≤ 𝐺 connected closed subgroup, 𝐻 ⋅ 𝑜 principal orbit.

𝐻 ↷ 𝑀 polar ⇔Σ = exp𝑜 𝔥𝔭
⊥ is a section

Theorem (Gorodski/Berndt, Díaz-Ramos, Tamaru)
𝐻 ↷ 𝑀 is polar if and only if 𝔥𝔭⊥ is a Lie Triple System and 𝔥𝔭⊥, 𝔥𝔭⊥ ⊥ 𝔥.
The action is hyperpolar if and only if 𝔥𝔭

⊥, 𝔥𝔭
⊥ = 0.

𝔥𝔭
⊥ = 𝑋 ∈ 𝔭 | 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝔥 = 𝔭⊖ 𝔥𝔭.
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