

Introduction to polar actions

Juan Manuel Lorenzo Naveiro Universidade de Santiago de Compostela, Spain

Seminar on symmetric spaces, 2021

Setting the stage

- > $(M^n, \langle \cdot, \cdot \rangle)$ complete Riemannian manifold with isometry group I(M).
- ▶ $\exp: T(M) \rightarrow M$ Riemannian exponential map.
- ▶ *G* connected Lie group with Lie algebra g.
- > Exp: $g \rightarrow G$ Lie exponential map.
- > $G \sim M$ proper isometric action.

$$X_p^* = \frac{d}{dt}|_{t=0} \operatorname{Exp}(tX) \cdot p.$$

Polar actions

 $G \curvearrowright M$ is **polar** if there exists $\Sigma \subseteq M$ such that:

- $\Sigma \cap G \cdot p \neq \emptyset$ for all $p \in M$.
- $T_p \Sigma \perp T_p(G \cdot p)$ for all $p \in \Sigma$.

 $SO(2) \cong \mathbb{R}^2$

Examples in \mathbb{R}^3

Some properties

- $G \curvearrowright M$ polar action with section Σ .
- $F: (g, p) \in G \times \Sigma \mapsto g \cdot p \in M$ is surjective.
- $T_p M = dF_{(e,p)}T_{(e,p)}(G \times \Sigma).$

Some properties

 $G \curvearrowright M$ polar action with section Σ .

- $F: (g, p) \in G \times \Sigma \mapsto g \cdot p \in M$ is surjective.
- $T_p M = T_p (G \cdot p) \oplus T_p \Sigma.$
- $G \cdot p$ has maximum dimension (i.e. principal or exceptional).

Proposition

 $\dim(\Sigma) = \min\{\operatorname{codim}(G \cdot p) \mid p \in M\} = \operatorname{cohom}(G \sim M).$

Some properties

 $G \curvearrowright M$ polar action with section Σ .

- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow v_p \Sigma = T_p(G \cdot p)$.
- Any $\xi \in \nu_p \Sigma$ is of the form

$$\xi = X_p^* = \frac{d}{dt}|_{t=0} \operatorname{Exp}(tX) \cdot p.$$

• $A_{\xi}: T_p \Sigma \to T_p \Sigma$ is skew-symmetric $\Rightarrow A_{\xi} = 0$.

Proposition

 Σ is a totally geodesic submanifold of M.

Consequences

- If Σ is a section, then $\tilde{\Sigma}$ is a section if and only if $\tilde{\Sigma} = g \cdot \Sigma$ for some $g \in G$.
- If $p \in \Sigma$ belongs to a principal/exceptional orbit, $\Sigma = \exp_p(\nu_p(G \cdot p))$.

Question

Given $G \curvearrowright M$ and a regular point $p \in M$, when is $\Sigma = \exp_p(\nu_p(G \cdot p))$ a section?

 $G \curvearrowright M$ cohomogeneity one action.

- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow G \cdot p$ is a hypersurface.
- $\gamma: \mathbb{R} \to M$ unit speed geodesic with $\gamma'(0) = \xi \in \nu_p(G \cdot p)$.
- $\Sigma = \gamma(\mathbb{R})$ meets all orbits orthogonally: given $X \in \mathfrak{g}$,

 $G \sim M$ cohomogeneity one action

- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow G \cdot p$ is a hypersurface
- $\gamma: \mathbb{R} \to M$ unit speed geodesic with $\gamma'(0) = \xi \in \nu_p(G \cdot p)$
- $\Sigma = \gamma(\mathbb{R})$ meets all orbits orthogonally: given $X \in \mathfrak{g}$,

 $\langle \gamma'(t), X_{\gamma(t)}^* \rangle' = \langle \gamma'(t), \nabla_{\gamma'(t)} X^* \rangle = 0$

 $G \sim M$ cohomogeneity one action

- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow G \cdot p$ is a hypersurface
- $\gamma: \mathbb{R} \to M$ unit speed geodesic with $\gamma'(0) = \xi \in \nu_p(G \cdot p)$
- $\Sigma = \gamma(\mathbb{R})$ meets all orbits orthogonally: given $X \in \mathfrak{g}$,

$$\langle \gamma'(t), X_{\gamma(t)}^* \rangle' = \langle \gamma'(t), \nabla_{\gamma'(t)} X^* \rangle = 0 \Rightarrow \langle \gamma'(t), X_{\gamma(t)}^* \rangle = C$$

 $G \sim M$ cohomogeneity one action

- $p \in M$ with $G \cdot p$ principal orbit $\Rightarrow G \cdot p$ is a hypersurface
- $\gamma: \mathbb{R} \to M$ unit speed geodesic with $\gamma'(0) = \xi \in \nu_p(G \cdot p)$
- $\Sigma = \gamma(\mathbb{R})$ meets all orbits orthogonally: given $X \in \mathfrak{g}$,

$$\langle \gamma'(t), X_{\gamma(t)}^* \rangle' = \langle \gamma'(t), \nabla_{\gamma'(t)} X^* \rangle = 0 \Rightarrow \langle \gamma'(t), X_{\gamma(t)}^* \rangle = 0.$$

Proposition

Every cohomogeneity one action is polar.

False in cohomogeneity two

Example: *s***-representations**

M simply connected semisimple symmetric space, $o \in M$, $G = I^0(M)$, $K = G_o$.

 \succ θ: g → g Cartan involution, g = f ⊕ p Cartan decomposition.

 $\mathfrak{p} \cong T_o M, X \equiv X_o^*.$

Isotropy representation $K \curvearrowright T_o M \leftrightarrow \text{Adjoint representation } K \curvearrowright \mathfrak{p}$ (s-representation).

Theorem

The representation $K \curvearrowright p$ is polar. Any maximal abelian $\mathfrak{a} \subseteq p$ is a section.

Example: *s***-representations**

M simply connected semisimple symmetric space, $o \in M$, $G = I^0(M)$, $K = G_o$.

 \succ θ: g → g Cartan involution, g = f ⊕ p Cartan decomposition.

 $\mathfrak{p} \cong T_o M, X \equiv X_o^*.$

Isotropy representation $K \curvearrowright T_o M \leftrightarrow \text{Adjoint representation } K \curvearrowright \mathfrak{p}$ (s-representation).

Corollary

Maximal abelian subspaces of p are conjugate.

Example: *s***-representations**

M simply connected semisimple symmetric space, $o \in M$, $G = I^0(M)$, $K = G_o$.

 \succ θ: g → g Cartan involution, g = f ⊕ p Cartan decomposition.

 $\mathfrak{p} \cong T_o M, X \equiv X_o^*.$

Isotropy representation $K \curvearrowright T_o M \leftrightarrow \text{Adjoint representation } K \curvearrowright \mathfrak{p}$ (s-representation).

Theorem (Dadok)

Every polar representation in \mathbb{R}^n is orbit equivalent to an *s*-representation.

The set $\Sigma = \exp_p(v_p(G \cdot p))$ intersects all orbits

The set $\Sigma = \exp_p(v_p(G \cdot p))$ intersects all orbits

The set $\Sigma = \exp_p(v_p(G \cdot p))$ intersects all orbits

 $\gamma(t) = \exp_p(t\xi),$ L'(0) = 0

The set
$$\Sigma = \exp_p(\nu_p(G \cdot p))$$
 intersects all orbits

$$\gamma(t) = \exp_p(t\xi),$$

$$L'(0) = -\int_0^1 \langle V, \gamma'' \rangle dt$$

$$+ \langle V(1), \gamma'(1) \rangle - \langle V(0), \gamma'(0) \rangle$$

The set
$$\Sigma = \exp_p(\nu_p(G \cdot p))$$
 intersects all orbits

 $\gamma(t) = \exp_p(t\xi),$ $L'(0) = -\langle V(0), \xi \rangle$

The set
$$\Sigma = \exp_p(\nu_p(G \cdot p))$$
 intersects all orbits

 $\gamma(t) = \exp_p(t\xi),$ $L'(0) = -\langle V(0), \xi \rangle$ \Downarrow $\xi \in \nu_p(G \cdot p)$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma: \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$.

 $J'' + R(J, \gamma')\gamma' = 0$ $R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma : \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$.
- $\{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'$.

$$J = a^i E_i + b^j F_j$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma : \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$.
- $\{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'$.

$$J = a^i E_i + b^j F_j$$

$$R(E_{i},\gamma')\gamma' = c^{ik}E_{k}$$
$$\langle R(F_{j},\gamma')\gamma', E_{l}\rangle = -\langle R(E_{1},E_{l})E_{1},F_{j}\rangle$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma : \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$.
- $\{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'$.

$$J = a^i E_i + b^j F_j$$

$$R(E_i, \gamma')\gamma' = c^{ik}E_k$$
$$\langle R(F_j, \gamma')\gamma', E_l \rangle = 0$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma : \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$.
- $\{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'$.

$$J = a^i E_i + b^j F_j$$

$$(a^i)''E_i + a^k c^{ki}E_i + (b^j)''F_j + b^j R(F_j, \gamma')\gamma' = 0$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma : \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$.
- $\{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'$.

$$J = a^i E_i + \frac{b^j F_j}{F_j}$$

$$\left(a^{i}\right)^{\prime\prime}+a^{k}c^{ki}=0$$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma : \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$.
- $\{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'$.

 $J = a^{i}E_{i} + b^{j}F_{j}$ $J \perp \Sigma \Leftrightarrow J(0), J'(0) \perp T_{p}\Sigma$

- $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field.
- $\gamma : \mathbb{R} \to \Sigma$ geodesic, $J(t) = X_{\gamma(t)}$.
- $\{E_i, F_j\}$ adapted parallel ortonormal frame, $E_1 = \gamma'$.

$$J = a^i E_i + \frac{b^j F_j}{F_j}$$

$$J \perp \Sigma \Leftrightarrow X_p, \nabla_{\gamma'(0)} X \perp T_p \Sigma$$

• $\Sigma \subseteq M$ complete totally geodesic submanifold, $X \in \mathfrak{X}(M)$ Killing vector field, $p \in M$.

Theorem

X is orthogonal to
$$\Sigma$$
 iff $X_p \in \nu_p \Sigma$ and $\nabla_{\xi} X \in \nu_p \Sigma$ for all $\xi \in T_p \Sigma$.

Corollary

Given an isometric action $G \curvearrowright M$ and a totally geodesic $\Sigma \subseteq M$, Σ is orthogonal to all the orbits it meets iff $X_p^* \in \nu_p \Sigma$ and $\nabla_{\xi} X^* \in \nu_p \Sigma$ for all $\xi \in T_p \Sigma$ and $X \in \mathfrak{g}$.

- M = G/K symmetric space, $G = I^0(M)$, $K = G_o$.
- $g = \mathfrak{t} \bigoplus \mathfrak{p}$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*}T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]^*$ $\exp_o(tX) = \operatorname{Exp}(tX) \cdot o$

- M = G/K symmetric space, $G = I^0(M)$, $K = G_o$.
- $g = \mathfrak{t} \oplus \mathfrak{p}$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*}T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]^*$ $\exp_o(tX) = \operatorname{Exp}(tX) \cdot o$

 $\Sigma \subseteq M$ totally geodesic, $o \in \Sigma \Rightarrow V = T_o \Sigma \subseteq p$ satisfies $[[V, V], V] \subseteq V$

- M = G/K symmetric space, $G = I^0(M)$, $K = G_0$.
- $g = \mathfrak{t} \oplus \mathfrak{p}$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*}T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]^*$ $\exp_o(tX) = \operatorname{Exp}(tX) \cdot o$

Assume $V \subseteq p$ satisfies $[[V, V], V] \subseteq V$ b = Lie(V)

- M = G/K symmetric space, $G = I^0(M)$, $K = G_0$.
- $g = \mathfrak{t} \oplus \mathfrak{p}$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*}T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]^*$ $\exp_o(tX) = \operatorname{Exp}(tX) \cdot o$

Assume $V \subseteq \mathfrak{p}$ satisfies $[[V, V], V] \subseteq V$ $\mathfrak{b} = [V, V] \bigoplus V$

- M = G/K symmetric space, $G = I^0(M)$, $K = G_0$.
- $g = \mathfrak{t} \oplus \mathfrak{p}$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*}T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]^*$ $\exp_o(tX) = \operatorname{Exp}(tX) \cdot o$

Assume $V \subseteq \mathfrak{p}$ satisfies $[[V, V], V] \subseteq V$ $\mathfrak{b} = [V, V] \bigoplus V \rightsquigarrow B \subseteq G$ Lie subgroup

- M = G/K symmetric space, $G = I^0(M)$, $K = G_o$.
- $g = \mathfrak{t} \oplus \mathfrak{p}$ Cartan decomposition, θ Cartan involution.

$$\nabla_{X^*}T = [X^*, T]$$
$$R(X^*, Y^*)Z^* = -[[X, Y], Z]^*$$
$$\exp_o(tX) = \operatorname{Exp}(tX) \cdot o$$

Assume $V \subseteq p$ satisfies $[[V, V], V] \subseteq V$ $\mathfrak{b} = [V, V] \bigoplus V \rightsquigarrow B \subseteq G$ Lie subgroup $\Sigma = B \cdot o$ complete, totally geodesic with tangent space $\mathfrak{b}_p = V$

 \leftrightarrow

- M = G/K symmetric space, $G = I^0(M)$, $K = G_o$.
- $g = \mathfrak{t} \oplus \mathfrak{p}$ Cartan decomposition, θ Cartan involution.

 $\nabla_{X^*}T = [X^*, T]$ $R(X^*, Y^*)Z^* = -[[X, Y], Z]^*$ $\exp_o(tX) = \operatorname{Exp}(tX) \cdot o$

Theorem

There is a bijective correspondence

Complete totally geodesic submanifolds through *o*.

Lie triple systems in $\mathfrak p$

 \leftrightarrow

- M = G/K symmetric space, $G = I^0(M)$, $K = G_o$.
- $g = \mathfrak{t} \oplus \mathfrak{p}$ Cartan decomposition, θ Cartan involution.

$$\nabla_{X^*}T = [X^*, T]$$
$$R(X^*, Y^*)Z^* = -[[X, Y], Z]^*$$
$$\exp_o(tX) = \operatorname{Exp}(tX) \cdot o$$

Theorem

There is a bijective correspondence

Complete flat totally geodesic submanifolds through *o*.

Abelian subspaces of $\mathfrak p$

- M = G/K of compact type
- ⟨·,·⟩ Ad(G)-invariant inner product on g.
- ad(X) skew-symmetric for all
 X ∈ g.
- Extend $\langle \cdot, \cdot \rangle_p$ to a *G*-invariant metric on *M*.

- M = G/K of noncompact type
- $\langle X, Y \rangle = -B(X, \theta Y)$ is an
 - inner product on g.
- ad(X) skew-symmetric for all
 X ∈ 𝔥.
- ad(X) symmetric for all $X \in p$.
- Extend $\langle \cdot, \cdot \rangle_p$ to a *G*-invariant metric on *M*.

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

Question

When is $H \curvearrowright M$ a polar action?

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

 $\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}.$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \bigoplus \mathfrak{h}_{\mathfrak{p}}.$$

 $H \sim M$ polar $\Leftrightarrow \Sigma = \exp_o(\mathfrak{h}_p^{\perp})$ is a section

- $\mathfrak{h}_{\mathfrak{p}}^{\perp}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_p^{\perp}$.

 $X \in \mathfrak{h}, \ \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp} \qquad \qquad 0 = \langle \nabla_{\xi} X^*, \eta \rangle$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \bigoplus \mathfrak{h}_{\mathfrak{p}}.$$

 $H \sim M$ polar $\Leftrightarrow \Sigma = \exp_o(\mathfrak{h}_p^{\perp})$ is a section

- $\mathfrak{h}_{\mathfrak{p}}^{\perp}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_p^{\perp}$.

 $X \in \mathfrak{h}, \ \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp} \qquad \qquad 0 = \langle [\xi^*, X^*], \eta \rangle$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \bigoplus \mathfrak{h}_{\mathfrak{p}}.$$

 $H \sim M$ polar $\Leftrightarrow \Sigma = \exp_o(\mathfrak{h}_p^{\perp})$ is a section

- $\mathfrak{h}_{\mathfrak{p}}^{\perp}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_p^{\perp}$.

 $X \in \mathfrak{h}, \ \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp} \qquad \qquad 0 = \langle -[\xi, X]^*, \eta \rangle$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \bigoplus \mathfrak{h}_{\mathfrak{p}}.$$

 $H \sim M$ polar $\Leftrightarrow \Sigma = \exp_o(\mathfrak{h}_p^{\perp})$ is a section

- $\mathfrak{h}_{\mathfrak{p}}^{\perp}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_p^{\perp}$.

 $X \in \mathfrak{h}, \ \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp} \qquad \qquad 0 = \langle -[\xi, X], \eta \rangle$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \bigoplus \mathfrak{h}_{\mathfrak{p}}.$$

 $H \sim M$ polar $\Leftrightarrow \Sigma = \exp_o(\mathfrak{h}_p^{\perp})$ is a section

- $\mathfrak{h}_{\mathfrak{p}}^{\perp}$ is a Lie Triple System.
- $X_o^* \in \nu_o \Sigma$ and $\nabla_{\xi} X^* \in \nu_o \Sigma$ for all $X \in \mathfrak{h}$ and $\xi \in \mathfrak{h}_p^{\perp}$.

 $X \in \mathfrak{h}, \ \xi, \eta \in \mathfrak{h}_{\mathfrak{p}}^{\perp} \qquad \qquad 0 = \pm \langle X, [\xi, \eta] \rangle$

 $H \leq G$ connected closed subgroup, $H \cdot o$ principal orbit.

$$\mathfrak{h}_{\mathfrak{p}}^{\perp} = \{ X \in \mathfrak{p} \mid \langle X, Y \rangle = 0 \text{ for all } Y \in \mathfrak{h} \} = \mathfrak{p} \ominus \mathfrak{h}_{\mathfrak{p}}.$$

 $H \curvearrowright M$ polar $\Leftrightarrow \Sigma = \exp_o(\mathfrak{h}_p^{\perp})$ is a section

Theorem (Gorodski/Berndt, Díaz-Ramos, Tamaru)

 $H \curvearrowright M$ is polar if and only if \mathfrak{h}_p^{\perp} is a Lie Triple System and $[\mathfrak{h}_p^{\perp}, \mathfrak{h}_p^{\perp}] \perp \mathfrak{h}$. The action is hyperpolar if and only if $[\mathfrak{h}_p^{\perp}, \mathfrak{h}_p^{\perp}] = 0$.

