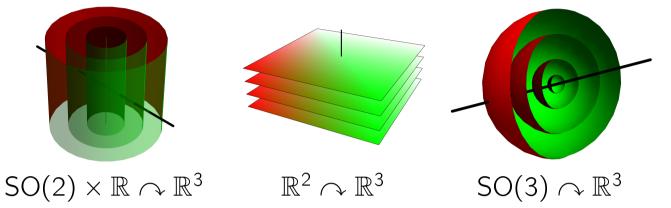
Codimension two polar homogeneous foliations on symmetric spaces of noncompact type

Juan Manuel Lorenzo-Naveiro Universidade de Santiago de Compostela jm.lorenzo@usc.es Symmetry and Shape, 2022

Introduction

A proper isometric action of a Lie group G on a complete Riemannian manifold M is polar if there exists a complete submanifold $\Sigma \subseteq M$ meeting every orbit orthogonally.



Main problem

Given M, classify all polar actions on M up to orbit equivalence.

The problem has been studied in manifolds with a large isometry group, such as symmetric spaces.

We focus on actions without singular orbits (polar homogeneous foliations) on symmetric spaces of noncompact type.

Previous results

 Codimension one foliations have been classified up to orbit equivalence in [2] and [4].

 \bullet The set of roots

$$\Delta = \{\lambda \in \mathfrak{a}^* \colon \lambda \neq 0, \ \mathfrak{g}_{\lambda} \neq 0\}.$$

Given a subset of positive roots $\Delta^+ \subseteq \Delta$ and the corresponding simple roots Λ , let $\mathfrak{n} = \bigoplus_{\lambda \in \Delta^+} \mathfrak{g}_{\lambda}$.

Iwasawa decomposition

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ (as vector spaces).

The connected subgroup AN of G with Lie algebra $\mathfrak{a} \oplus \mathfrak{n}$ acts simply transitively on M, so that $M \cong AN$. Every connected subgroup of AN induces a homogeneous foliation on M.

The classification

Choose $\alpha \in \Lambda$, a line $\ell \in \mathfrak{g}_{\alpha}$, and an abelian plane $\mathfrak{v} \subseteq \mathfrak{g}_{\alpha}$. Define the following subalgebras of $\mathfrak{a} \oplus \mathfrak{n}$:

> $\mathfrak{s}_{\ell} = \ker lpha \oplus (\mathfrak{n} \ominus \ell)$ $\mathfrak{s}_{\mathfrak{v}} = \mathfrak{a} \oplus (\mathfrak{n} \ominus \mathfrak{v})$

(Here, \ominus denotes the orthogonal complement). Take the connected subgroups S_v , S_ℓ with Lie algebras \mathfrak{s}_v , \mathfrak{s}_ℓ .

• A method for constructing all hyperpolar homogeneous foliations (that is, with $\Sigma = \mathbb{R}^n$) is described in [1], but the congruence problem remains open.

In codimension 2, the section is either \mathbb{R}^2 or homothetic to $\mathbb{R}H^2$. Our main objective is to study this last case. We will assume:

- M = G/K is a symmetric space of noncompact type, $G = I^0(M)$, $K = G_o$ for a base point $o \in M$.
- $S \leq G$ is a connected closed subgroup acting polarly with codimension two orbits.

Iwasawa decomposition

The Lie algebra $\mathfrak{g} = \text{Lie}(G)$ is semisimple. Let $\mathfrak{p} = \mathfrak{k}^{\perp}$ (with respect to the Killing form), so that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ and $\mathfrak{p} = \mathcal{T}_o M$. Choose a maximal abelian subspace $\mathfrak{a} \subseteq \mathfrak{p}$. Define

• For $\lambda \in \mathfrak{a}^*$, the root space

$$\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} \colon [H, X] = \lambda(H)X \ \forall H \in \mathfrak{a}\}$$

References

- J. BERNDT, J. C. DÍAZ-RAMOS, H. TAMARU, Hyperpolar homogeneous foliations on symmetric spaces of noncompact type, J. Differential Geom. 86 (2012), no. 2, 191-235.
- [2] J. BERNDT, H. TAMARU, Homogeneous codimension one foliations on noncompact symmetric spaces, J. Differential Geom. 63 (2003), no. 1, 1-40.
- [3] G. D. MOSTOW, On maximal subgroups of real Lie groups, Ann. of Math. (2) 74 (1961), 503-517.
- [4] I. SOLONENKO, Homogeneous codimension one foliations on reducible symmetric spaces of noncompact type, https://arxiv.org/abs/2112.02189.

Acknowledgements: The author has been supported by the projects PID2019-105138GB-C21, ED431F 2020/04, and the FPI program.

Fact

 S_v and S_ℓ act polarly inducing a codimension 2 foliation with a non-flat section.

Main theorem

Any codimension 2 polar homogeneous foliation on M is hyperpolar or orbit equivalent to the action of an S_v or S_ℓ .

Proof sketch

Suppose S induces a codimension 2 polar homogeneous foliation.

- 1. By [1], \mathfrak{s} can be assumed to be solvable.
- 2. From a structure result on maximal solvable subalgebras of \mathfrak{g} [3], we get $\mathfrak{s} \subseteq \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \oplus \mathfrak{a} \oplus \mathfrak{n}$.
- 3. By using the algebraic characterization of polar actions in [1], we obtain that $\operatorname{proj}_{\mathfrak{a}\oplus\mathfrak{n}}(\mathfrak{s})$ is equal to $\mathfrak{s}_{\mathfrak{v}}$ or \mathfrak{s}_{ℓ} .
- 4. We prove that if $\operatorname{proj}_{\mathfrak{a}\oplus\mathfrak{n}}(\mathfrak{s})$ is $\mathfrak{s}_{\mathfrak{v}}$ (resp. \mathfrak{s}_{ℓ}), then S has the same orbits as $S_{\mathfrak{v}}$ (resp. S_{ℓ}).